# THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS 

MMAT5220 Complex Analysis and its Applications 2014-2015 Suggested Solution to Test 1

1. (a) Note $f^{\prime}(z)=u_{x}+i v_{x}=0$, so $u_{x}=v_{x}=0$. By the Cauchy Riemann Equations, $v_{y}=u_{x}=0$ and $v_{x}=-u_{y}=0 . u_{x}=u_{y}=v_{x}=v_{y}=0$ for all $(x, y) \in \mathbb{R}^{2}$ and so $u$ and $v$ are constant functions. Therefore, $f(z)$ is a constant function.
(b) Let $f(z)=\cos ^{2} z+\sin ^{2} z$. Then $f^{\prime}(z)=-2 \cos z \sin z+2 \sin z \cos z=0$ for all $z \in \mathbb{C}$, and so $f(z)$ is a constant function. Note that $f(0)=1$, so $f(z) \equiv 1$.
2. (a) Note that $\sin z=\frac{e^{i z}-e^{-i z}}{2 i}$ and $\cos z=\frac{e^{i z}+e^{-i z}}{2}$.

$$
\begin{aligned}
\sin z+\cos z & =2 \\
\frac{e^{i z}-e^{-i z}}{2 i}+\frac{e^{i z}+e^{-i z}}{2} & =2 \\
(1+i)\left(e^{i z}\right)^{2}-4 i e^{i z}+(i-1) & =0 \\
e^{i z} & =\frac{2 \pm \sqrt{2}}{2}+i \frac{2 \pm \sqrt{2}}{2} \\
z & =\frac{\pi}{4}+2 k \pi-i \ln (\sqrt{2} \pm 1) \quad \text { where } k \text { is an integer. }
\end{aligned}
$$

(b) Let $z=x+i y$, then

$$
\begin{aligned}
\log \left(e^{z}\right) & =2 \\
\log \left(e^{x+i y}\right) & =2 \\
\ln e^{x}+i \operatorname{Arg}\left(e^{x+i y}\right) & =2+i(0) \\
x+i \operatorname{Arg}\left(e^{x+i y}\right) & =2+i(0)
\end{aligned}
$$

Therefore, $x=2$ and $y=2 k \pi$ where $k$ is an integer.
3. Length of $C=4 \pi$ and $\left|e^{z}\right|=e^{\operatorname{Re}(z)} \leq e^{2}$.
$z$ lies on $C$ implies $z^{2}+1$ lies on the circle $\{|z-1|=4\}$, so

$$
\begin{aligned}
\left|z^{2}+1\right| & \geq 3 \\
\frac{1}{\left|z^{2}+1\right|} & \leq \frac{1}{3}
\end{aligned}
$$

By ML-estimate, $\left|\int_{C} \frac{e^{z}}{z^{2}+1} d z\right| \leq \frac{4 \pi e^{2}}{3}$.
4. (a) $f(z)=f(x+i y)=u(x, y)+i v(x, y)=\sqrt{|x y|}+i 0$, so $u(x, y)=\sqrt{|x y|}$ and $v(x, y)=0$.

$$
\begin{aligned}
u_{x}(0,0) & =\lim _{\delta x \rightarrow 0} \frac{u(\triangle x, 0)-u(0,0)}{\triangle x} \\
& =\lim _{\triangle x \rightarrow 0} \frac{\sqrt{|\triangle x \cdot 0|}}{\triangle x} \\
& =0 \\
& =v_{y}(0,0)
\end{aligned}
$$

and

$$
\begin{aligned}
u_{y}(0,0) & =\lim _{\Delta y \rightarrow 0} \frac{u(\triangle y, 0)-u(0,0)}{\triangle y} \\
& =\lim _{\triangle y \rightarrow 0} \frac{\sqrt{|\triangle y \cdot 0|}}{\triangle y} \\
& =0 \\
& =-v_{x}(0,0)
\end{aligned}
$$

Therefore, the Cauchy Riemann equations are satisfied at the point $z=0$
(b) If $f(z)$ is differentiable at $z=0$, then $f^{\prime}(0)=u_{x}(0,0)+i v_{x}(0,0)=0$.

However, we consider $\triangle z=t+i t$, where $t>0$, then

$$
\begin{aligned}
\lim _{\triangle z \rightarrow 0} \frac{f(0+\triangle z)-f(0)}{\triangle z} & =\lim _{t \rightarrow 0^{+}} \frac{\sqrt{\left|i t^{2}\right|}}{t+i t} \\
& =\frac{1}{1+i} \\
& \neq 0
\end{aligned}
$$

Therefore, $f$ is not differentiable at $z=0$.

